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Martin Zirnbauer 

Renormalization — A Universal 
Tool of Modern Physics` 

O. Introduction 

The beginning of the 20th century saw several major breakthroughs in 
physics: Einstein formulated his theories of special and general relativity 
and Bohr, Heisenberg, Dirac and others unravelled the laws of quantum 
physics. These advances strongly shaped the path subsequently followed 
by physics, and they have also captured the fancy of some of the general 
public in spite of the fact — or perhaps because of the fact — that they de-
scribe phenomena far removed from our common experience and intui-
tion. Einstein's theory of gravity is needed for the description of pheno-
mena that occur over astronomically large length scales, i.e. over distances 
ranging from the radius of our solar system up to the radius of the entire 
universe. Quantum theory describes processes taking place at microscop-
ically small length scales, in the mysterious world of atoms and subatomic 
particles. 

Much has happened in physics during the six and a half decades that 
have passed since the heyday of quantum theory. Other major advances 
have been made that are comparable to those of Einstein and Bohr in their 
impact on physics: quantum field theory, spontaneous symmetry break-
ing, gauge theories, renormalization, critical phenomena, asymptotic 
freedom, fractals, spin glasses, chaos ... Each of these advances has 
brought a novel quality to physics by either opening up a new realm of 
reality or by changing our perspective of the consequences of existing 
theory. From the long list of major advances I have selected one topic, 
renormalization, for today's Fellow Colloquium. I made this choice 
because renormalization is an addition to modern physics with singular 
importance both for its internal consistency and for its predictive power. 

For many a theoretical physicist, renormalization provides a calcula-
tional tool, a mathematical apparatus, enabling him to tackle a large 
variety of relevant and challenging problems that are too difficult to solve 
by any other known means. Needless to say, this practical and technical 

* Colloquium held at the Wissenschaftskolleg, March 23, 1993. 
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aspect of renormalization is beyond the scope of what I can explain to an 
audience of the kind I am facing today. But in addition to being a calcula-
tional tool, renormalization in its modern formulation by Kenneth G. 
Wilson has become a general concept, a powerful framework in which to 
think — and sometimes speculate — about the properties of a large class of 
physical systems. Often it is not even necessary for the theoretical physicist 
to actually implement the cumbersome formal procedures of renormali-
zation in order to make progress in his understanding. Rather, the mere 
knowledge that renormalization exists and operates in the way it does may 
be sufficient. More precisely, renormalization may guide the theoretical 
physicist in which aspects of a problem to focus on, it suggests relation-
ships between seemingly unrelated physical systems, and it may lead to 
conjectures which can then be proved by detailed and sometimes painstak-
ing work. It is these latter conceptual aspects that I consider to be of inter-
est to a general audience, and I am confident that a fair idea of what they 
are can be conveyed to you in the sixty minutes I have. 

Let me make it very clear right at the outset that I have contributed 
nothing at all to the development of renormalization. As a matter of fact, 
the modern view of the subject was already fully developed sixteen years 
ago when I began to study physics. The legitimacy of this talk derives from 
my fascination with the subject and from my having repeatedly been a user 
of renormalization in my past research. Moreover, I plan to continue to be 
a user of renormalization, mostly — as far as I can tell at present — in its 
application to the statistical theory of disordered systems, about which 
you have already heard a great deal in the talks of Hans Weidenmüller, 
Pier Mello and Axel Müller-Groeling. 

My presentation will be divided into three parts: 
1. The need for a cutoff 

(the catastrophe of infinities) 
2. Renormalization at work 

— the general concept 
— an example 

3. Filter action and some consequences 
— universality classes 
— change of perspective 

The first part comes with the subtitle "the catastrophe of infinities". The 
notion of infinity I am referring to here is a mathematical abstraction, but 
it is an abstraction you are all familiar with. Pick a large number and add 
to it the number one to produce a number which is larger yet. Continue the 
process of addition and you will produce a sequence of numbers that 



Martin Zirnbauer 181 

grows beyond any bound. Increase beyond all limits is what implies the 
mathematical abstraction called infinity. Physicists — and, in fact, all 
natural scientists — use it constantly, for example when computing the 
derivative, or rate of change, of a smooth function. Nevertheless, the final 
outcome of any computation in physics, the value of any measurable 
quantity, such as the binding energy of the hydrogen atom, has to be finite, 
as opposed to infinite. In this latter sense, infinity has no place in physics. 
It therefore caused a severe crisis in physics when not just one but a whole 
multitude of infinities arose in the mid-thirties, as a result of physicists' 
attempts to combine Einstein's theory of special relativity with quantum 
theory to form what is called "quantum field theory". Because of its histor-
ical importance for the development of renormalization, I will try to give a 
hint of what the crisis was. By way of preparation, I will begin with 
another example that nicely illustrates the origin of the difficulty and has 
the virtue of being intelligible by common sense. It is an example that has 
become widely known through some popular textbooks on fractals. 

1. The need for a cutoff 

Consider the first drawing in Figure 1 which should remind you of the 
coastline of Britain, the largest of the British Isles. In fact, I made this 
drawing by opening the English section of a European road map with a 
scale of 1 : 10,000,000, selecting a sequence of points located on the British 
shoreline with a distance of about 100 miles from each other, and connect-
ing the points by straight lines. Suppose now that, for some reason, we 
wish to know the total length of the British coastline. (We are the royal car-
tographers of a British monarch who has commissioned us to provide this 
information about the territorial extension of his lands.) For a first 
answer, we could take a ruler, measure the length of each of the linear 
pieces the drawing is composed of, add the lengths all up, and convert the 
result into the actual length by multiplying by 10,000,000. For the sake of 
the argument, let us assume that the outcome of this computation is 2,000 
miles. The result so obtained is vulnerable to objection, however. After all, 
the British coastline is not straight over distances of 100 miles but is a 
highly structured curve, protruding into the sea and receding from it in 
irregular succession. This is indicated by the second drawing in Figure 1, 
which shows the segment between Fort Wrath and Ullapool magnified. 
So let us refine the estimate and base our computation on a more accurate 
representation of the British coastline, connecting by straight lines a se-
quence of points on the shore only 10 (rather than 100) miles apart. By the 
same procedure as before, we will then find that the result for the total 
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coastal length has gone up, to about 4,000 miles or so. Continuing the pro-
cess, we might turn to data (taken by a high-resolution satellite camera, for 
example) accurate down to one mile, a tenth of a mile, a hundredth of a 
mile, and so on, and we would obtain an ever increasing sequence of total 
coastal lenghts, 8,000 miles, 15,000 miles, 25,000 miles and so on. 

It is now clear what I am driving at: the question posed (what is the total 
coastal length of Britain?) has no unique answer. In order to succinctly 
state the observations made so far, let the word "cutoff scale", or "cutoff' 
for short, mean the distance at which the linear approximation is applied. 
We can then say that the result for the total coastal length is cutoff-depend-
ent and increases as the cutoff is lowered, i.e. as we measure it on a more 
and more refined scale. The rate of increase is a measure of the "rough-
ness" of the coastline. If we assume coastlines to be rough on all length 
scales, even the very smallest, then the total coastal length grows beyond 
all bounds and becomes infinite as the cutoff is reduced to zero. You might 
argue, however, that such an assumption becomes meaningless at length 
scales below the size of a sand grain where the exact location of the bound-
ary between land and sea is no longer well defined. Put differently, coast-
lines have a natural minimal cutoff, and from a pragmatic point of view we 
need not worry about infinity which arises here just because a mathemat-
ical abstraction is pushed to its limit. 

The second example, which I will turn to now, gives more reason for 
worry. To begin, let me remind you that physics makes a distinction 
between matter and light, and that matter and light exert influences upon 
one another; we say that they interact. Matter produces light when forced 
to change its state of motion; a surface separating two different types of 
matter partially or totally reflects light; and light on its passage through 
matter may be absorbed by the matter and converted into heat. All these 
statements are easily verified by experimental observation. What is less 
easily done is to formulate a quantitative theory that explains the huge 
body of empirical knowledge about light and its interaction with matter 
now available. Twentieth century physics has produced such a theory; it is 
called QED (quantum electrodynamics). 

In what follows I will first list some empirical facts basic to QED and 
then indicate how the combination of these facts led to a severe tangle with 
infinity and the need for introduction of a cutoff. First the basic facts. 
(1) Matter consists of elementary particles, i.e. entities which are, for all 

that we know, indivisible. The property of an elementary particle that 
makes it interact with light is its charge. The most abundant negatively 
charged elementary particle, responsible for most of the interaction of 
matter with light, is the electron. 

(2) Light, although it has fooled many eminent minds into believing it to 
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be a continuum with wave-like properties (my apologies to our Profes-
sor Häberle: Goethe, alas, was mistaken), consists of particles, too, a 
view already held by Newton and unequivocally confirmed by experi-
ment at the beginning of our century. Light particles are called "pho-
tons" in physics. 

(3) Photons and electrons follow the laws of quantum theory, which are 
probabilistic and prohibit our asking questions of too detailed a kind 
(Heisenberg's uncertainty principle). An example of a permissible 
question to ask is the following: given that an elementary particle was 
at point A at time t 1,  what is the probability for the particle to be at 
point B at a later time t 2? To compute this probability we should con-
sider all possible "paths" (two typical examples of which are shown in 
Figure 2) leading from A to B in time t2 — t i , and we should calculate a 
certain weighted sum over all of these paths.' 

(4) Electrons, by their property of carrying charge, may both emit and 
absorb photons at any point in time and space. 

One of the prominent consequences of principles (1) — (4) (with minimal 
further input of a technical kind) is a description of the process of scatter-
ing of photons by electrons. Consider Figure 3a, which shows a typical 
path of an electron first absorbing a photon at point A and then re-emit-
ting a photon somewhat later at point B. This process of absorption and 
re-emission changes the energy and momentum of the photon. It is called 
"Compton scattering". Now, by principle (4), the electron may emit and 
reabsorb yet another photon (p') while on its way from A to B, see Figure 
3b, and by principle (3), to calculate the probability for Compton scatter-
ing we must sum over all possible locations for absorption and re-emission 
to occur and over all possible paths taken by the electron and the photon p' 
in the intervening time. Here is the point where disaster strikes: the sum 
over intermediate paths turns out to be infinite! The mathematical reason 
for this is that what we are required to calculate by the laws of quantum 
theory is a sum over paths which are rough on all length scales. Thus there is 
a certain analogy to the British coastline, which became infinitely long 
when roughness was assumed to persist down to arbitrarily small length 
scales. 

The difficulty is related to our notion of elementary particles as point-
like objects: neither the photon nor the electron, to the best of our knowl-
edge today, has a finite size that might serve as a natural minimal cutoff. 
Note that the appearance of difficulties upon assuming objects to be 

I What exactly the weight factors are in this sum I will not tell you since this would 
require making a mathematical excursion that would distract from the purpose 
of the talk. 
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point-like is a novel feature of quantum field theory not present, for 
example, in Newtonian physics. It is an excellent approximation, for the 
purpose of computing the orbit of the earth around the sun by Newton's 
laws, to idealize earth and sun as points. But even if this idealization were 
a bad approximation, it would still be consistent, in the sense that it 
would not give rise to difficulties of the kind that appear in QED. 

Furthermore, the difficulty of infinities in QED is not easily discarded 
since it puts the predictive power of physics in jeopardy. It is true that for 
most practical purposes (let me mention here the theory of atomic struc-
ture, the theory of chemical bonding, and much of modern technology 
such as power generation, power transformation, telecommunication 
etc.) physicists do not need to resort to fully-fledged QED but can make 
do with simple approximate theories that, by virtue of their ignoring 
quantum theory (!), are free of the disease of infinities. Thus, the diffi-
culty is more of a principal than of a practical kind, but in a science that 
claims to be basic to the other natural sciences, matters of principle are 
serious matters. 

By 1948, about 15 years after the first appearance of infinities in QED, 
physicists had figured out a way of circumventing the problem. What 
they did precisely was to introduce a cutoff — as you would surely have 
guessed by now — and then to add so-called "counter terms" to eliminate 
those contributions that become infinite as the cutoff turns to zero. In 
this way, they turned QED into the quantitatively most successful theory 
of physics to date. The ad hoc procedure of introducing an arbitrary 
cutoff plus counter terms, however, left a bad feeling among many of the 
physics community since it gave the appearance of being a dirty trick 
that, in the words of CalTech physicist Richard Feynman, simply 
"brushed the problems under the rug". In fact, textbooks published as 
late as the mid-seventies declared QED and quantum field theory in gen-
eral to be seriously flawed. All this has changed with the advent of the 
modern view of renormalization. I will come back to this change of per-
spective in the third section, after showing you "renormalization at 
work". 

2. Renormalization at work 

Having paid due reference to the historical origin, I will now turn to the 
main part of my talk, an attempt to explain what renormalization is and 
how it works. The first notion to be introduced is that of a "micro sys-
tem", which involves the following: 
(i)  a number of "degrees of freedom" a 1, a,, ...; 
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(ii) a set of interactions f 1, f 2, ... determining the influences exerted by 
the degrees of freedom upon one another; 

(iii) a cutoff X guaranteeing that no infinities can possibly arise; 
(iv) a "theory" T, i.e. a set of mathematical rules for computing from the 

degrees of freedom and their interactions the observable properties of 
the physical system they represent. 

For example, the degrees of freedom might be atoms in a solid, the interac-
tions the chemical forces acting between atoms, the cutoff the interatomic 
distance (for many purposes we may ignore the complicated internal 
structure of atoms), and the mathematical rules would come from the laws 
of solid-state theory. In my second example, the degrees of freedom are 
electrons and photons (jointly called "fields"), the interactions are defined 
by the charge and the mass of the electron (also called "vertices"), the 
cutoff is arbitrary, as long as it is small enough, and the theory is QED, i. e. 
an elaboration of the rules (3) and (4) listed in part 1. 

Let me emphasize that our notion of micro system is very general. The 
degrees of freedom need not be subject to, say, the laws of quantum theory 
but may be describable in classical (or Newtonian) terms. Similarly, the 
interactions can be quite arbitrary in their form and strength, with just one 
exception: they are required to be local. What this means is best explained 
by way of our two examples. Atoms in a solid can establish chemical 
bonds only with neighboring atoms but not with atoms far away in space 
(Figure 4a). A photon can be gobbled up by an electron (by virtue of the 
electrons carrying charge e) only when their paths cross (Figure 4b). 

A micro system has observable properties which, at least in principle if 
not in practice, can be computed from the theory, given the degrees of free- 
dom and their interactions defined at a certain cutoff scale. Examples of 
observable properties are (1) the heat capacity of a solid and (2) the proba-
bility for Compton scattering in QED. Those properties of a micro system 
which are observable at length scales much larger than the cutoff scale are 
called the "macro properties". Physics aims at the often highly nontrivial 
goal of predicting these macro properties from a knowledge of the micro 
system only. 

With all these preparations made, we now imagine in addition to the 
micro system S 1  = (a1 , a 2, ...; f 1, f2,  ...;X; T) another micro system S2  = 
(A 1, A 2, ...; F1, F2, ...; A; T). The second one differs from the first one in 
that the cutoff is larger and the degrees of freedom are fewer. (The set {A 1 , 
A 2, ...} will typically be a subset of {a 1, a 2, ...}.) In Example 1, we might 
take for the cutoff two interatomic distances and select for the degrees of 
freedom the subset of white atoms in Figure 5a, which constitute only one 
fourth of the total number of atoms. In Example 2, we might require that 
the electron and photon paths to be summed over are straight over dis- 



186 Wissenschaftskolleg • Jahrbuch 1992/93 

tances of 2 x  10'8  meters instead of 1 x 10-18  meters. Suppose now that 
the interactions F1, F2, ... have been chosen in such a way that the macro 
properties of the first and second micro system coincide. Then, since we 
are concerned with no more (and no less) than the prediction of macro 
properties, the second micro system is just as good for our purposes as is 
the first one. We say that the two micro systems are "macro-equivalent", 
and we call the second one a "renormalized" micro system. 

You may wonder about the logic of all this, since our definition of 
renormalized micro system makes reference to the macro properties 
which, after all, it is our aim to compute! The crucial point is that physi-
cists have established ways of constructing renormalized micro systems 
without going through the intermediate step of calculating the macro 
properties, provided that the interactions are local. Example 1: Accord-
ing to solid-state theory, the heat capacity of a solid composed of atoms 
vibrating from thermal excitation, is calculable from the so-called parti-
tion sum, of which we only need to know here that it is a certain statis-
tical sum over the positions and velocities of all atoms in the solid. To 
construct the renormalized micro system S2  what one does is to compute 
a partial sum, i. e. a sum over the positions and velocities of all the black 
atoms in Figure 5a, which are not part of S2. (The sum for the white 
atoms is done later.) When this partial sum has been carried out, the 
black atoms have served their purpose — all they ever do is to vibrate 
and by doing the partial sum we have already taken this fully into 
account —, so they can be dropped and we arrive at the renormalized 
micro system (Figure 5b). The only remnant of the existence of the black 
atoms are forces acting between the white atoms, which we take for the 
renormalized interactions F1, F2, ... Similarly in Example 2, the renor-
malized interactions can be constructed by a clever way of organizing the 
sum over electron and photon paths. 

In summary, renormalization is a function that assigns to every micro 
system S i  a renormalized micro system S2  by increasing the cutoff and 
decreasing the number of degrees of freedom while adjusting the interac-
tions so as to leave the macro properties unchanged. We denote this func-
tion by R, in formulae: S, = (Si). You will now ask why all this is use-
ful and why, given the fact that the macro properties are already com-
pletely determined by the knowledge of S 1  alone, one should go through 
the process of constructing the auxiliary micro system S2  at all. The use-
fulness of renormalization derives from the following features: 
(1) depends only on the change of cutoff (i. e. on the ratio A / k) but not 

on the cutoff a, itself. 
(2) can be iterated to produce a sequence of renormalized micro sys- 

tems S1 ->S2—>S3-*...—*Sn—* 
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(3)  ' has the characteristics of a filter. (What this means will be explained 
in more detail later.) 

These features make it possible to treat micro systems whose degrees of 
freedom conspire to interact in such a subtle manner as to make the com-
putation of the macro properties extremely difficult if not impossible by 
any conventional technique. An example of such a "hard-to-treat" micro 
system, where renormalization is the only known method of solution, is 
given in the following. The example is not a standard textbook example 
but was chosen because it nicely illustrates all the important features while 
avoiding concepts that are unfamiliar to someone not trained in physics. 

Let us consider two interfaces, and let us imagine that these interfaces 
exert a force upon one another (Figure 6 a). For concreteness, we take the 
first interface to be the boundary between a solid and a liquid, and the sec-
ond one to be the boundary between the (same) liquid and a saturated 
vapor. (This choice, however, is not essential for what follows.) For such a 
physical system in equilibrium, there exist two distinct possibilities: the 
two interfaces may be bound to each other, or they may be unbound and 
dissociate. Suppose now that the forces acting between the two interfaces 
have been given to us and that the interfaces are in thermal equilibrium. It 
will then be our aim to predict which of the two possibilities is the one that 
is realized, the case of bound interfaces or the case of unbound interfaces. 

The motivation for considering such a problem comes from the study of 
"wetting phenomena". Consider some vapor, say water in air, in contact 
with a solid surface. If the vapor is saturated and the surface cold, vapor 
particles may condense on the surface to form little fluid droplets (Figure 
6b), a phenomenon vividly familiar to the Fellows living in the Villa 
Walter. We say that the liquid "partially wets" the surface. In addition, 
there exists the possibility for the liquid to make the surface completely 
wet by forming a continuous film as is shown in Figure 6c. (This occurs if 
the sum of the surface tensions of the solid-liquid and liquid-vapor inter-
faces does not exceed the surface tension of the solid-vapor interface.) In 
the latter case of complete wetting, one may ask whether the liquid film 
grows to some well-defined finite thickness or keeps growing thicker and 
thicker by continued adsorption of vapor particles. It is this question of 
stable versus unstable film thickness that leads, at a certain level of 
abstraction, to the problem of interacting interfaces formulated above. 

I repeat the question posed: are the two interfaces bound to each other 
or do they dissociate? The answer is easy to give when both interfaces are 
smooth, and it is the following. The force between the two interfaces must 
be repulsive when they come very close to each other, in order to avoid 
touching and thus annihilation of one interface, a possibility which is 
ruled out by our assuming the vapor's readiness to condense on the solid. 
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If the force is attractive at some larger distance, then by continuity there 
exists some distance do  where the force is zero and, in equilibrium, the two 
interfaces will be bound at this distance. If, on the other hand, the force is 
repulsive at all distances, then the interfaces will dissociate. These two 
alternatives are graphically depicted not in terms of forces but through the 
respective potentials in Figures 7a and 7b.2  

The argument just given is qualitatively correct when both interfaces are 
smooth. However, we already know from the example of the British coast-
line, which can be viewed as an "interface" in two dimensions, that inter-
faces need not be smooth but may be rough under certain circumstances. 
This happens when gravity is weak or absent, and when the surface ten-
sion is sufficiently small, since then energy (favoring a smooth surface) is 
overcome by entropy (favoring an irregular surface which is statistically 
much more probable) to make the interface rough. 

Let us now assume that the solid-liquid interface is smooth but the 
liquid-vapor interface is rough (Figure 8a). If the effects of roughness are 
small compared to the influence of the forces present, the situation is qual-
itatively the same as that analyzed before. Similarly, if the roughness 
dominates over the forces, the answer to the question posed is again sim-
ple: the interfaces dissociate. On the other hand, if the influences of rough-
ness and attractive forces are comparable in size, the answer is far from 
obvious. Under these circumstances, we are neither able to compute the 
total force exerted by one interface on the other from simple considera-
tions; nor can we base our prediction on considerations involving just a 
few atoms (i. e. a small part of both interfaces). The effects of roughness 
become operative only over lengths extending across many atomic units. 
Thus, what we are facing here is a physical system with very subtle collec-
tive behavior whose accurate prediction requires us to make calculations 
for a very large number of degrees of freedom. It is an example of a wide 
class of problems in physics known as "critical phenomena". In the 
absence of an exact solution, which is rarely available, the only known 
method of dealing with critical phenomena accurately is renormalization. 

We shall model the problem of interacting interfaces by a micro system 
defined in the following way. The degrees of freedom a 1, a 2, ... are the dis-
tances from the solid surface of the "interfacial points" marking the loca-
tion of the liquid-vapor interface (Figure 8b). For the cutoff k we take the 
lateral distance between interfacial points and connect neighboring points 
by planar surfaces, which appear as straight-line segments in Figure 8b. 

2  Note that the "potential" of a force is a function with the property that its nega-
tive derivative equals the force. 
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There are forces acting between neighboring interfacial points and 
between interfacial points and the solid surface. The latter forces are given 
by a potential of the kind shown earlier in Figures 7a and 7b. Our theory is 
standard thermodynamics, which asserts that all equilibrium properties 
follow from the so-called canonical partition sum over all degrees of free-
dom (i. e. the interfacial distances in our case). 

To construct the renormalization function  we again organize the 
partition sum in steps. We first do the sum for all interfacial points colored 
black in Figure 8c while holding the white ones (whose sum is to be done 
later) fixed. In this way, the cutoff is doubled, the interactions are mod-
ified, and what emerges is a renormalized micro system (Figure 8d). We 
are particularly interested in the renormalization of the potential of the 
force acting between the interfacial points and the solid surface, since this 
holds the answer to the question whether the interfaces bind or dissociate. 
In Figure 9a, two different potentials are plotted (dashed and dash-dotted 
curves) together with the renormalized potentials produced by twenty 
applications of R (full curve). Two things are noteworthy here: (i) the 
renormalized potentials are purely repulsive telling us the nontrivial infor-
mation that the interfaces dissociate in this case, and (ii) the renormalized 
potentials coincide. This is a general feature: all unbound micro systems of 
the kind considered renormalize to one and the same repulsive potential. 
Similarly, all bound micro systems renormalize to one of a one-parameter 
family of attractive potentials with increasing potential depth. (This is not 
shown in any figure here.) Finally, all micro systems that are critical, i. e. 
neither bound nor unbound, renormalize to the unique potential plotted 
as the full curve in Figure 9b. The dashed and dash-dotted curves in this 
figure are two examples of critical potentials. 

3. Filter action and some consequences 

We recapitulate: application of the renormalization function X' increases 
the cutoff of a micro system and, at the same time, adjusts the interactions 
in such a manner as to leave the macro properties, i. e. the quantities that 
are observable at scales much larger than the cutoff scale, unchanged. 
Notice that an increase in cutoff wipes out any detail of the forces acting 
below the cutoff scale. Because the number of degrees of freedom is 
reduced, the detail lost is irretrievable, and hence the process of renormali-
zation cannot be reversed. This irreversibility is consistent with renormali-
zation having the characteristics of a filter: some types of interaction are 
passed on to bigger cutoff scales with none or almost no change, others are 
completely held back or are substantially reduced. We saw a demon- 
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stration of this in the above example, where many applications of the 
renormalization function invariably gave rise to one of just three possible 
outcomes: a unique repulsive potential for every unbound system, a 
smooth attractive potential for every bound system, or the unique critical 
potential if the system is neither bound nor unbound. Thus, compared to 
the vast number of interactions that may occur in physical systems, it is 
only a very small number that actually passes the renormalization filter. 

A micro system that survives many applications of the filter action with 
none or little change is called a "renormalizable field theory", or "renor-
malizable theory" for short. The set of micro systems which renormalize to 
the same renormalizable theory have the same macro properties. We say 
that they belong to the same universality class. It can be shown by rather 
straightforward techniques that the number of renormalizable theories 
and hence the number of universality classes is very small. This is the basic 
principle underlying universality in physics. Notice the tremendous gain 
in efficiency: instead of having to make a separate study for each of an infi-
nite variety of possible micro systems, we need only enumerate the univer-
sality classes and study the properties of these. Often the universality class 
to which a specific micro system belongs, can be identified on the basis of 
symmetries (and other guiding principles) alone, without actually going 
through the formidable machinery of renormalization. This possibility of 
"short-cutting" renormalization makes the concept of universality classes 
especially useful in practice. 

As a further illustration, let me add an example taken from my own field 
of research, the physics of chaotic and disordered systems. Axel Müller-
Groeling has introduced you to the notion of a mesoscopic system as a 
physical system where quantum coherence plays a significant role. Recall 
that mesoscopic wires fabricated in the laboratory come with defects and 
various other irregularities, which we call "disorder". Axel showed you 
that the resistance of such a mesoscopic disordered wire exhibits random 
but reproducible fluctuations when some parameter like the strength of an 
applied magnetic field is varied. (Actually, Axel talked about rings, but his 
explanations apply equally well to straight wires.) 

To get an analytical description of these fluctuations, Weidenmüller and 
his group in Heidelberg used a "coarse-grained" model, which divides the 
wire into compartments (see Figure l0a) of equal length, all of which, 
including the charge transport among them, are modelled by random 
matrices. When the results of the Heidelberg model were compared to 
those obtained from a more conventional model representing the disorder 
by randomly distributed impurities (Figure 10b), it was found that the 
results coincide! An explanation of this coincidence, which might surprise 
you in view of the rather striking differences between the two models, can 
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be found by exploiting the filter action of renormalization. To do so, one 
formulates both models as so-called "supersymmetric field theories". (I 
am sure you do not wish to hear the details of this.) Upon increasing the 
cutoff, one in fact discovers that both models approach the same renorma-
lizable theory and hence belong to the same universality class. Actually, a 
closer look reveals in this (as in the more general) case that a renormaliz-
able theory need not be just a single point in parameter space, called a 
"fixed point" in technical language, but may consist of a whole family of 
systems characterized by a parameter called the "correlation length". 

Instead of elaborating on the concepts of fixed point and correlation 
length, let me finish off by picking up on part 1 of my talk, where I antic-
ipated that renormalization would change our perspective of QED. I am 
now in a position to explain in which way it has changed and why. Recall 
the need for introduction of a cutoff in QED to prevent observable quan-
tities from being infinite. Such a cutoff is an element external to QED (and, 
in fact, to any quantum field theory), its magnitude is arbitrary and, worst 
of all, the observable quantities depend on it. Although there exists a way 
of cancelling the undesirable cutoff dependence, this requires treating the 
electron's mass and charge as free parameters not predictable by the 
theory. Not surprisingly, for a long time QED was widely perceived as 
being a theory not only incomplete but also seriously flawed. This has now 
changed because the filter action of renormalization suggests a plausible 
scenario that makes QED very acceptable to the elementary-particle phy-
sicist. The scenario is the following. 

It is postulated that there exists some other, more fundamental theory of 
physics which is complete, i. e. free of arbitrary input, and whose observ-
able predictions remain finite as the cutoff is lowered to zero. The more 
fundamental theory is supposed to describe physical phenomena correctly 
and completely at all length scales, including those below the Planck scale 
of 10-35  meters. This theory - I will call it the Grand Theory — is not 
known and, now comes the crucial point, need not be known if all we are 
interested in is a description of, say, atomic phenomena. At atomic scales, 
i.e. at distances of 10-12  meters or so, a cutoff of 10-i5  meters offers a much 
finer resolution than is really necessary. We can therefore increase the 
cutoff to some subatomic scale by applying the process of renormali-
zation. In this process, all of the wealth (or dearth) of information about 
the elementary constituents and the form and strength of their interactions 
in the Grand Theory is compressed into just two numbers, the mass and 
the charge of the electron, and what emerges is QED as we know it. 

It must be admitted that such a scenario will have no direct conse-
quences as long as the Grand Theory remains unknown. However, it does 
change our perspective by suggesting that QED is indeed incomplete, but 
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incomplete for a good reason. It also changes the direction of future 
research by suggesting that QED is the best possible theory of atomic 
physics we could have hoped for and that any search for alternative theo-
ries is futile. Furthermore, since the remnants of the Grand Theory that 
are left over by the mutilizing filter action of renormalization are con-
tained in no more than two numbers (the electrons mass and charge), 
QED is predictive. All we need to do is just to fix, once and for all, these 
two numbers by experiment. Every other observable quantity can then be 
predicted — within the limits of our calculational ability — from QED 
itself without any extraneous input. 

I have argued that atomic physics is accurately described by QED (an 
incomplete theory) because phenomena observable at atomic scales are 
extremely insensitive to processes occurring at much smaller scales. The 
final point I would like to make is that this insensitivity implies a very pes-
simistic prognosis concerning the possibility of elementary-particle physi-
cists uncovering the Grand Theory. To do so, they would have to figure 
out a way — and I don't see how they ever could as humans — of studying 
matter under the most extreme conditions, such as those that existed for a 
very tiny fraction of a second after the creation of the universe in the Big 
Bang. 

The resulting uncertainty is reflected in a wide spectrum of differing 
opinions held by members of the community of elementary-particle physi-
cists. On the one hand, there are those who expect the Grand Theory to be 
defined by a single mathematical formula of the greatest possible sym-
metry and simplicity; on the other hand, it has been suggested that the ele-
mentary constituents and their interactions be described by a truly vast 
random matrix of unimaginable complexity and irregularity. In my very 
personal and humble opinion, the question "is there order or chaos below 
the Planck scale?" will never be answered. By subjecting the forces of 
nature to the filter action of renormalization, God achieved two goals at 
once: He created atomic physics, governed only by the beautifully simple 
two-parameter theory called QED, but at the same time made sure that 
His knowledge of the most fundamental laws of physics will remain hid-
den from us forever. 
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Fig. I: Roughness of the British coastline 
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Fig. 2: Feynman's path sum in quantum theory 
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Fig. 3: Compton scattering 
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Fig. 5: Doing the partial sum 
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Fig. 7: Interface interaction potentials 
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Fig. 10: Mesoscopic disordered wires 




