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Thomas H. Seligman 

Symmetry in Chaos* 

Symmetry in Nature was the title of a talk that my friend, the well-known 
physicist and group theoretician Marcos Moshinsky, has held before quite 
different audiences and in maybe fifty different versions. I have heard his 
exposition on more than one occasion and never heard the same talk 
twice. The field is wide and rich and can be connected to fields that range 
from mathematics over the natural sciences and all the way down to the 
fine arts. 

I would have liked to follow in the steps of my teacher but I felt over-
whelmed by the wealth of the field. As our work this year is centered 
around the concept of chaos, I considered that it might be appropriate to 
discuss how symmetry, this supreme concept of order, may interplay with 
chaos, which we intuitively see as the very essence of disorder. I shall try to 
give an idea how two concepts of symmetry, the conventional one and a 
new structural one intermesh in a way that will be familiar to the expert 
from other contexts. What I plan to present is certainly not acceptable for 
any specialized journal. Nevertheless it will present both new ideas and 
new views of old ideas that are at the basis of some of my recent research 
papers, and I hope that some of the basic thought behind this work may 
make sense to the non-specialist. 

I wish to recall that we distinguish — maybe somewhat artificially -
between disordered systems and systems with dynamical chaos. 

In the first case, we actually assume that the object we study is affected 
by a statistically disordered environment, such as, for example, the scatter-
ing of light or of massive particles, such as neutrons, off a crystal structure 
with statistically distributed impurities or off amorphous substances 
where order is totally absent such as gases, liquids or glasses. 

In the second case we consider a usually quite simple, but non-linear sys-
tem which evolves according to a well defined deterministic non-statistical 
law, but where this evolution turns out to be highly unstable and sensitive 
to initial conditions. 

Note that both things can occur simultaneously and are not always well 
distinguished. Thus, presumably, the chaotic movements of the molecules 
in a gas are due to the chaotic dynamics of the system, but the scattering of 
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particles on such a gas will be viewed as a process happening on a disor-
dered medium. 

Symmetry in chaotic systems has received very little attention, and such 
attention was mostly restricted to small discrete symmetry groups such as 
reflection, time reversal, permutations and finite rotations. These sym-
metries are of considerable importance and the time reversal invariance 
has given rise to some very deep results in the field of quantum chaos. Yet I 
want to address a completely different concept of symmetry that I used in 
some recent work and that can best be understood if we try to view the sim-
ilarities of disorder and chaos rather than the differences. 

Consider that one of the very first assumptions we make in any disor-
dered system is isotropy and homogeneity. This implies for amorphous 
systems a very strong symmetry, namely invariance under rotations and 
translations, i.e. under the full Euclidean group. How can this be, as we 
just introduced disorder to destroy the symmetry? Here we deal with in-
variance in a statistical sense. The individual sample will certainly not 
have symmetry; but if we consider an ensemble, this ensemble will be in-
variant. We expect such a situation for any amorphous substances, such as 
gases, liquids or glasses etc. In the cases of gases or liquids, i.e. when we are 
not dealing with solids, we may also view this large symmetry as a time av-
eraged symmetry for a specific system rather than an ensemble property. 

You have been exposed to an important example of such considerations 
in the multiple discussions of mesoscopic systems that were presented 
here. In the simplest case, namely the one-dimensional situation, the 
impurities were always assumed to be randomly distributed along the 
wire, and only the leads (surface) gave rise to a breaking of this symmetry. 
Based on that, statistics were made with an ensemble of impurity distribu-
tions that is invariant under translations along the wire while each indi-
vidual member of the ensemble does not have this property. 

Clearly, the physical consequences of a statistical symmetry are not the 
same as those of a symmetry of the individual sample. On the contrary, in 
the example of one-dimensional wires symmetry of the individual sample 
leads to extended states while statistical invariance leads to localization; in 
a loose way we might say that the two kinds of symmetry are complemen-
tary as they have opposite effects. In general we shall proceed to show that 
the two concepts of symmetry are indeed complementary in a sense that is 
mathematically well defined and indeed not uncommon in applications of 
group theory. 

The concept of complementarity is defined as follows: The pair of sub-
groups q,  c 9 is complementary in the Group 9 if their elements com-
mute and if neither of the two can be enlarged and still fulfill the commu-
tation condition. This means in simple terms that if 9 is the largest group 
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of transformations contemplated for our system and if, say, ' is the actual 
symmetry group of this system, then R' is the group of all those transfor-
mations we can do without violating the symmetry. 

If we have no further information than the symmetry of a system, it is 
plausible to admit all transformations that conserve this symmetry in 
order to inspect the universe of systems that have this symmetry. This will 
naturally form the ensemble which we wish to study if we intend to extract 
some statistical information. This seems very fruitful and almost an ob-
vious path in the light of usual information theoretic approaches. One 
relevant question remains: Complementary in what larger group? We shall 
see that once answered this question, this concept will be very fruitful in 
determining the ensembles which we ought to study in a given case. 

Let us now turn our attention to chaotic, but deterministic systems. 
Among them we shall focus on so-called kicked systems as these are easiest 
to consider in analogy with disordered systems. In particular let us look at 
the kicked rotor. It is defined as a two-dimensional rotor which receives 
periodically a kick that is a delta function in time and some function of the 
angle. Such a system has actually been shown to be equivalent statistically 
to a banded random matrix problem, with a band shape dependent on the 
function of the angle. We can now see what happens in phase space, which 
consists of an angle, and the corresponding angular momentum, which 
can extend to infinity. In this phase space we may in general find ordered 
and disordered structures. In particular some invariant torus may block 
the path to infinite angular momentum and thus give compact chaotic 
pieces of phase space. It is thus a good example for a periodically time-
dependent system, and has been widely used as a paradigm. The only non-
typical feature stems from the low dimensionality that precludes a phe-
nomenon called Arnold diffusion; indeed in higher dimensions typically 
all chaotic regions are connected. 

Having the above example in mind we now study a general periodic 
one-dimensional system represented by a Hamiltonian H (q, p) = H (q, 
p, t + T), where T is the period of the system. We can then consider the 
time evolution over a period which is a map of the space coordinate q and 
the momentum p at time t onto those at time t + T. We consider such a 
map to be chaotic if the iteration scatters points all over the (q, p) space or 
phase space that is available. Such a phase space can be described in differ-
ent coordinate systems, but we must maintain that the two coordinates 
behave with respect to each other like a space coordinate and a momen-
tum. This is guaranteed by admitting canonical transformations only. On 
the other hand, the map of time evolution itself must be canonical for the 
same reason. It is therefore tempting to consider the group of all (invert-
ible) canonical transformations 

9  as the large group in which we will have 
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to set the scheme of complementarity outlined above. A completely chaot-
ic system with no symmetries whatsoever will be statistically invariant 
under all transformations of this large group 9 

 in the sense that time av-
erages will not be affected. Any symmetry, continuous or discrete will be 
broken by some transformations of this group. Therefore we shall have 
statistical invariance with respect to such transformation only, which 
commute with the elements of the symmetry group. The symmetry group 
itself has to be a subgroup of 9. The group of all transformations from 9 
that commute with the symmetry group is thus complementary in 9 to the 
symmetry group. 

Indeed this is exactly the structural invariance group defined in [1], 
without the use of the concept of complementarity. There it was put to use 
for a general proof of the connection between spectral statistics and chaos, 
which, up to now, is the main result of our work in this context. As this 
proof is presented elsewhere and is also quite technical, we shall skip it here 
and pass to a particular aspect not previously treated. In the proof, strong 
emphasis was put on the limitation to compact phase spaces, i. e. phase 
spaces that do not extend to infinity in either momenta or space coordi-
nates. Sound technical reasons exist for this limitation, but the physical 
background is more interesting: 

It is diffusion. A particle will take some time in an extended system to 
get from one part of the system to another however chaotic its motion may 
be. This really means that transformations, that will take parts of con-
figuration space into each other, that are very far apart, will certainly not 
leave invariant any properties on a time scale that is not large compared to 
the time needed to get from one such part to another. Something similar 
will hold for momenta if arbitrary large transfers of momenta per unit 
time are not allowed. Thus we have to keep track of the time scale on which 
diffusion takes place. This time scale will depend on the energy available 
and thus for any finite phase space there will be an energy high enough that 
the time we are interested in is large compared to the diffusion time. If the 
space is infinite, on the other hand, this is no longer true. We can also say in 
the terms used above, that in such cases we have to take into account 
another essential piece of information that is not a symmetry. 

If we are interested in quantum phenomena, another time scale enters 
the game; this scale relates directly to quantum phenomena and is often 
called the break time and at times beyond this time analogies with classical 
mechanics break down completely. As we go to very high energies we can 
approach the classical limit and the break time typically goes to infinity. 
Thus according to the results obtained in [1] for compact systems, the con-
nection between chaos and random-matrix models associated to the clas-
sical ensembles [2] hold as is also suggested by a theorem of Schnirelmann 
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[3], who shows that wave functions are ergodic in similar cases. On the 
other hand if the system is infinite, this clearly is no longer true as diffusion 
time will also be infinite. In this case the invariance holds locally, but glob-
ally it fails. In practice this is even more stringent because we may not be 
near enough to the classical limit for an extended but finite system to 
explore all its phase space and thus such situations frequently occur. 

This problem is often taken into account by breaking the extended sys-
tem into sufficiently small pieces for diffusion time to be faster then any 
characteristic time of the system except the free flight transit time, yet large 
enough to be compared to the mean free flight path in the system. For 
these small pieces some random matrix ensemble is usually assumed. 
Examples of such a procedure are the treatments of mesoscopic systems by 
H. Weidenmüller or P. Mello [4] and their respective collaborators. 

Another approach lies in the use of more particular random matrix 
ensembles such as banded matrices, which in the case of the kicked rotator 
give exactly the right answer [5]. This leads us to an important phenom-
enon, namely localization. Banded matrices with exponentially decaying 
bandwidth can indeed be shown to display Anderson type localization [6]. 
Thus states of such a system are not extended, even if the classical motion 
goes off to infinity. 

If, on the other hand, we look at a system with translation symmetry 
individually (as opposed to such a symmetry for a time average or an 
ensemble), eigen-states will always be extended and time evolution will 
extend to infinity. This will always be true even if the classical motion is 
confined, e. g. by potential periodic barriers. 

The essential difference between the two complementary concepts of 
symmetry (or invariance of individual systems) on one hand and of struc-
tural (or statistical) invariance on the other is thus very apparent in this 
asymptotic domain of large time behaviour. A fruitful exploitation of 
these ideas beyond the result of [1] will depend on a number of points. 
First, a better understanding of the group in which the complementary 
groups are embedded. Second, an understanding of their relation to 
dynamical groups and spectrum generating algebras, and, last but not 
least, on the ability to exploit these ideas in the context of approximate 
symmetries. Indeed the question of how to define approximate structural 
invariance and how to relate the many non-classical ensembles used in lit-
erature to such approximate invariances may well be the key to further 
progress along these lines. 
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