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Random Scattering of Electrons in 
Magnetic Fields* 

1. An Experiment 

Untypically for a theorist, let me begin my talk with an experiment. Con-
sider a tiny golden ring with a diameter of only 820 nm and a thickness of 
40 nm. A greatly magnified picture of such a ring is given in Fig. 1. The 
ring is coupled with four contacts to the surrounding bulk material. These 
contacts or "leads" serve the purpose of injecting current into the probe 
and measuring the resulting voltage difference. It goes without saying that 
highly elaborate fabrication techniques are necessary to manufacture such 
a microstructure. The fabrication process usually involves the use of a 
computer-steered electron microscope and samples of the quality shown 
in Fig. 1 have become available only comparatively recently, i. e. since the 
beginning of the eighties. In 1985, a group of physicists at the IBM Tho-
mas J. Watson research center in New York performed an experiment 
where they put this very ring into a static, homogeneous magnetic field, 
cooled it down to 0.04 K (four hundredth of a degree above the abolute 
zero of temperature), and measured its resistance as a function of the mag-
netic field strength. The resulting curve is shown in Fig. 2. Two prominent 
features of this curve catch the eye. While the overall behaviour is domi-
nated by irregular fluctuations, local magnifications at arbitrary field 
strengths exhibit a rather regular, oscillatory shape. Interestingly, this 
curve is reproducible: Sweeping several times over the full range of ma-
gnetic field strengths the resistance will always follow the same highly 
complex pattern. Being a unique property of the specific sample such pat-
terns have been called "magnetofingerprints". 

In view of the complexity of the experimental curve it is certainly sense-
less to investigate every detail of the graph in Fig. 2. Instead, one should 
look for the generic properties of the data and, to put it in Pier Mello's 
words, "ask the right questions". 

The "right questions" are concerned with aspects of the experiment that 
are independent of the particular sample under investigation such as the 
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origin, the amplitude, and the magnetic field scale of the two main features 
of the curve. In the following, I will focus my attention on these issues. 

2. Further Motivation 

I claim that the IBM experiment demonstrates the quantum mechanical 
nature of the electron. One may, of course, legitimately ask why this is 
interesting and why one should bother to deal with these questions. The 
answer, I believe, is twofold. First, there is considerable scientific interest 
associated with the problem. Quantum mechanics is a theory originally 
developed for atoms and objects of similar size. The IBM experiment 
shows that this microscopic theory becomes relevant at unexpectedly large 
length scales (we have to keep in mind that 11.tm corresponds to a few 
thousand atomic distances). At these length scales the experimental phys-
icist has comparatively direct access to several interesting quantities like, 
e. g., the resistance. Therefore experiments like the one performed at the 
IBM laboratory provide a sensitive test of our understanding of both 
quantum coherence (we will come back to this term later) and transport 
properties. This is my main personal motivation to investigate systems 
like the one in Fig. 1. 

Second, research in this field may become very important for technolog-
ical reasons. We are all aware of the tremendous progress in computer and 
chip design which has revolutionized our daily life over the past few 
decades. Highly integrated circuits have succeeded in reducing the costs 
and increasing the speed of the machines that were built from them. 
Unfortunately, within ten years or so, present-day computer technology 
based on the Silicium-MOSFET (metal oxide semiconductor field effect 
transistor) will have practically reached its limit. The reason is simple: a 
MOSFET has a minimal size. Upon further miniaturization the MOS-
FET loses the properties that were the basis of its proper functioning. Do 
we have promising new strategies to improve computer performance? 
Much effort has been invested in trying to replace Silicium by Galliumar-
senide (GaAs), a material which allows for considerably higher speed. 
However, GaAs is expensive and difficult to handle and the prospects are 
at best unclear. A completely different strategy places emphasis on the 
development of machines with many parallel processors. This is certainly 
a very fruitful approach but it does not lead to further miniaturization. 
Currently, so-called exotic quantum effects are being discussed as the basis 
for novel ultrasmall quantum devices which might revolutionize micro-
electonics in a similar manner as the transistor revolutionized ordinary 
electronics. Optimistic scientists do not hesitate to dream of a supercom- 
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puter on a single chip. To pursue this kind of program, much research con-
cerning the electronic behaviour of very small devices is called for. The 
IBM experiment described above exhibits at least one of those exotic 
quantum effects. 

Furthermore, the problem I want to address in this talk is far more gen-
eral than it might seem now. Also, there are certain connections to what is 
usually abbreviated as "quantum chaos". I will return to both of these 
points at the end of my presentation. 

3. Constructing a Model 

The first thing we have to take into account when we try to understand 
electron transport in solids is the regular crystal lattice of atoms. It was 
Felix Bloch in 1928 who formulated what is since known as the Bloch 
theorem. This theorem essentially states that electrons in a perfectly peri-
odic solid propagate similarly to free electrons with certain modifications 
due to the lattice. Therefore we cannot expect such spectacular effects as in 
Fig. 2 from the interaction between electrons and periodic lattice. 
However, in reality there is no such thing as a perfect crystal. There are 
always defects in the crystal order or atoms of a different element irregu-
larly distributed over the probe. I will refer to these deviations from perfect 
order collectively as "impurities". The distribution of these impurities 
depends on the history and the manufacturing process of the sample. For 
all practical reasons it can be considered to be random. The point of cen-
tral importance is that the impurities act as obstacles for the electrons in 
the probe. In 1958 Philip Anderson emphasized the prominent role of 
these obstacles by focussing attention on the impurities alone, neglecting 
the perfectly ordered crystalline lattice. We will adopt this view in the fol-
lowing considerations. 

Let us now formulate the theoretical model for the real physical system 
in Fig. 1. We consider a ring of finite thickness with one external lead on 
either side to inject and/or extract the current. Inside the body of the ring 
we assume a certain distribution of scattering centers (impurities). The 
whole ring is placed in a perpendicular, homogeneous magnetic field and 
the only interaction taken into account apart from the influence of the 
magnetic field on the electrons is the one between electrons and impurities. 
In view of this rather primitive model one may be tempted to ask whether 
we are dealing with a simple or even trivial problem. The answer to this 
question again has two parts. First, let us restrict ourselves to a purely 
technical level. We cannot calculate the conductance or, equivalently, 
resistance of our model for a particular fixed distribution of the impurities 
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due to the vast number of coordinates introduced by specifying all the 
individual impurity positions. Instead, one is led to consider an ensemble 
of impurity distributions (this is the statistical input into the model) and 
calculate statistical measures like the mean conductance or the variance of 
the conductance. The necessary averaging process is technically difficult 
and several mathematical methods have been developed for this purpose. 
Today, this problem can be considered to have been solved to a certain 
extent. Second, our model of course oversimplifies the real situation. We 
neglected the presence of additional interactions such as those between 
electrons and the lattice vibrations (phonons) or between the electrons 
themselves. The main reason why the IBM experiment was performed at 
very low temperatures was to avoid electron-phonon scattering. We will 
come back to this point later. To what extent the electron-electron interac-
tion is important for understanding the properties of small metallic sys-
tems is presently being actively discussed. 

4. Treating the Model 

In classical physics the motion of, say, a point particle is given by New-
ton's equation. In quantum mechanics the notion of a point particle with 
well-defined position and momentum is abandoned and replaced by the 
so-called wave function governed by the Schrödinger equation. A wave 
function associates with every point in space a complex number c. Let us 
represent this complex number (which can be viewed as a pair of real 
numbers) by an arrow from the origin to some point in the plane. The 
x-coordinate of the arrow corresponds to one of the two real numbers (the 
"real" part, say) and the y-coordinate to the other (the "imaginary" part). 
Alternatively, we may characterize the complex number by the length of 
the arrow (the modulus Id of c) and the angle between the arrow and the 
positive x-axis (the phase cp ). All wave phenomena, not only the wave 
function of quantum mechanics, can be represented in such a way. Super-
position of two waves amounts to combining, for every point in space, the 
two arrows according to the rules of vector addition. The resulting field of 
arrows represents a new wave. The important role of the wave function is 
due to its physical interpretation: The squared length 1cl 2  of the arrow at 
any given point is the probability of observing the particle (in our case an 
electron) at this same point. 

We cannot rigorously solve the Schrödinger equation here. But we can 
discuss an intuitive picture emerging from the rigorous solutions. Let us 
for reasons of simplicity consider a rectangular sample with a certain fixed 
impurity distribution. We disregard the magnetic field for the moment. We 
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can visualize the electrons as plane waves propagating through the leads 
connected to our probe and eventually impinging on the impurities. As a 
consequence, a circular wave is formed around each single impurity and 
the resulting interference pattern soon becomes extremely complicated. 
An alternative and equivalent visualization is more suitable for our pur-
poses here. Instead of wave fronts we now employ paths to characterize 
the electron's motion. Unfortunately, this picture is no less complicated 
than the previous one since we have to take into account all possible paths 
of the electron. When an electron path hits an impurity we have to allow 
for a continuation of this path in all possible directions. This corresponds 
to the circular wave of the previous picture. Whenever two paths meet, 
their superposition is calculated as described above by adding the two 
complex numbers at this point. The probability of an electron moving 
from A to B is given by the superposition of all possible paths connecting 
these two points. Two oberservations are of central importance for us. 
First, the probability of an electron penetrating the whole sample — a 
quantity closely connected to the conductance — is given by the superposi-
tion of very many complicated paths. Second, the values of the phase cp 
along the path depend only on the geometry of the path. To explain this 
last statement a little further we come to the notion of quantum coherence. 

Let us fix two particular paths which originate from the same point at 
the left border of the rectangular sample and end at a common point on 
the right side. In between, however, they differ from each other. We 
assume in a first step that the second of our statements above is true, i. e. 
the phases depend only on the geometry of the path. Then, whenever these 
two paths contribute to the description of some electron's motion, the 
relative phase difference Aço = Ÿ9 1 — Ç92 between them is the same. Therefore 
the superposition of the complex numbers c 1  and c 2  associated with the 
two paths leads to the transmission probability 

Ic1 + c21 2  = 1c11 2  + 1c21 2  

This is called a coherent superposition. We note the dependence on the 
phase difference App. If, on the contrary, we allow for time-dependent 
effects like lattice vibrations, the relative phase A(o becomes arbitrary. 
Depending on whether or not the electron interacts with a phonon (a pro-
cess which changes the phases along the relevant paths), the final phase 
difference will assume any possible value. Since cos (A() can either be posi-
tive or negative this means that the corresponding term does not effec-
tively contribute at all and we have 

Ic1 + c 2 I 2  = Ic11 2  + 1c212. 

+ 21 c 1  I I c2 1 cos (A(o). 
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This defines an incoherent superposition. A sample for which the experi-
mental conditions are chosen such that only coherent and no incoherent 
superpositions can occur is called a mesoscopic system. The IBM experi-
ment had to be performed at very low temperatures to reduce the lattice 
vibrations and thereby ensure that the conditions for the mesoscopic 
regime were actually met. 

Having dealt with impurity scattering we turn to the effect of a magnetic 
field. The simplest case is that of a metallic loop having two contacts to the 
right and to the left with a magnetic flux through the opening. We disre-
gard impurities and the magnetic field does not penetrate the body of the 
loop. Electrons injected into this loop have the choice of propagating 
through the upper or lower half, i. e. there are exactly two possible paths. 
Due to the famous Aharonov-Bohm effect (discovered in 1959), the cor-
responding relative phase Aço acquires an extra contribution determined 
by the magnetic flux. Under ideal conditions the transmission through the 
loop is turned on and off as one varies the magnetic field strength forcing 
the two electron paths to interfere either constructively or destructively. 

Before coming back to the original IBM experiment, we consider in an 
intermediate step the effect of a magnetic field on the transport properties 
of a rectangular sample. We have already said that the conductance is 
determined by a superpositon of very many paths. Since we deal with a 
mesoscopic system, this superposition sensitively depends on the phases of 
all these paths. If we change the magnetic flux through our sample, the 
phases will readjust accordingly, the details of the interference will be 
altered, and the final result (the conductance) will differ slightly from its 
previous value. Due to the high number and complexity of the electron 
paths involved, these changes will not follow a regular pattern but appear 
to be rather irregular and erratic. These are the famous universal conduct-
ance fluctuations discovered in 1984. 

After all these considerations understanding the IBM experiment is a 
simple matter. Instead of a rectangle we are dealing with a ring of finite 
thickness in a homogeneous magnetic field. A certain amount of flux pen-
etrates the body of the ring and induces universal conductance fluctu-
ations in the way just described. The flux through the opening of the ring 
gives rise to the Aharonov-Bohm effect and the ensuing oscillatory behav-
iour of the conductance or, as in the case of the IBM experiment, resist-
ance. In principle, this quantum effect could serve to construct very small 
switches. The field scales, the typical variations of the magnetic field 
strength over which the oscillations or the irregular fluctuations occur, 
depend on the ratio of the magnetic flux in the ring and in the opening, i. e. 
on the geometry of the ring. 
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5. Conclusion and Outlook 

I have promised to comment on the generality of the mechanisms dis-
cussed in my talk. In principle this talk could have been entitled "Wave 
Transport through Disordered Media". The transport of electrons 
through disordered solids is only one example. Many of our considera-
tions also apply to such diverse processes as the penetration of light 
through regions with randomly varying index of refraction, of radio 
waves through fog, and of sound waves through randomly distributed 
geological structures in the earth. The last item plays a certain role in the 
search for gas and oil reservoirs. Of course, all these problems have their 
own peculiarities and difficulties. But the underlying physics, the scatter-
ing of waves from random obstacles, guarantees a great degree of similar-
ity between them. 

Finally, I would briefly like to point out three recent developments con-
nected with the topic of my talk. First, let us recall the views of Bloch (per-
fectly regular crystal) and Anderson (totally disordered solid), respec-
tively. Both views are rather extreme and it is very natural to expect that a 
combination of them gives rise to yet another variety of unexplored phe-
nomena. Research in this direction has been intensifying in the last few 
years. Second, instead of investigating transport properties of open sys-
tems one can think of disconnecting a mesoscopic system from the exter-
nal world and ask for the consequences of quantum coherence in isolated 
systems. The problem of the so-called persistent currents belongs to this 
category. Considerable progress concerning these questions has been 
made by the work of the physics group at the Wissenschaftskolleg. Third, 
much effort is currently spent manufacturing samples with few or no 
impurities. Such devices are called ballistic. They are realizations of quan-
tum billiards and can serve to investigate the quantum analogue of class-
ical chaos. 
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