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Universality in the Statistical 
Description of Physical Systems* 

The need for a statistical description [1,2] 

In order to illustrate the idea, we present in Fig. 1 a setup, known as Gal- 
ton's board, that we shall now briefly discuss. A marble falling from the 
top meets a large number of obstacles before it finally ends up in one of the 
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lower containers. At each obstacle, the marble can fall either to the right or 
to the left of it, so that, after many collisions, the trajectory is indeed a very 
complex one. 

The trajectory is so sensitive to the "initial conditions" that, if we now 
observe a second marble falling from the top, we find, in general, a differ-
ent trajectory and a different final container. This is an example of an 
unstable trajectory, for which small changes give rise to large effects. Thus, 
if we try to describe the above experiment using the laws of classical 
mechanics, we have to face the fact that ever longer trajectories become, in 
the long run, unpredictable. Does this mean that a description of the prob-
lem is hopeless? The answer is yes, adding that it will also be uninteresting, 
if we do not ask an appropriate question! 

Suppose that, instead of trying to describe each trajectory in detail, we 
repeat the experiment many times and ask what fraction of all the marbles 
ends up in a given container. If we do that, we observe that a statistical 
regularity emerges: the distribution of marbles tends towards being a 
limiting one, the so called bell-shaped, normal or Gaussian distribution 
sketched in Fig. 1. The lesson we learn is that now we obtain a simple 
answer! We thus see that a statistical approach to the problem is not just 
the only feasible one, but, as we shall see further on, it may reveal features 
which would otherwise remain hidden. 

As another illustration, consider the molecules of a gas in equilibrium 
inside a box: this is an example of a many-body system. In a classical 
mechanical description, each molecule follows a straight trajectory, until 
it collides with another molecule or with the walls of the container. The 
situation is even more complicated than in the first example, because now 
all the molecules move. Again, the complex, unstable trajectories occur-
ring in this problem are not predictable in the long run, and a statistical 
approach is indeed more appropriate. 

We can thus ask, for instance, what fraction of the molecules can be 
found in a certain range of velocities Sox  c5v 80,. The answer is given by 
the expression 

(2 mkT/m)'
12  

known as the Maxwell-Boltzmann distribution. In the above equation, m 
is the mass of each molecule, y the velocity, k a universal constant known 
as Boltzmann's constant and T the absolute temperature. We see that the 
answer is a Gaussian distribution centered at zero velocity and with a 
width which is related to the temperature of the gas. A concept like temper-
ature, indeed a very important one, is revealed to us precisely when a sta- 
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tistical approach is adopted! We also notice that the Maxwell-Boltzmann 
distribution given above does not depend on the specific interaction 
between the molecules: i. e., for a given molecular mass and temperature, 
the distribution is given once and for all! This is an example of a universal 
behaviour, where the only physically relevant quantity is the ratio kT/m. 
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The central-limit theorem [3] 

This is one of the most powerful theorems in the theory of probability. We 
illustrate it here by means of a simple example. We assign the values 1 and 
-1 (indicated below as 1) to the two sides of an "unbiased" coin, that we 
use to do an experiment. 

The first line in the figure indicates that the two sides occur with the 
same probability when the coin is tossed. If we now consider pairs of out-
comes, we have the four possibilities shown in the second line. In the right-
most situation, i. e. 11, the sum of the outcomes is 2; this possibility occurs 
with the same probability as the leftmost one 1 1, that gives a sum of -2, 
while the value 0 for the sum occurs twice as frequently. The third line 
shows the corresponding situation for triplets, and the fourth, for quartets 
of outcomes. The result gradually becomes similar to a Gaussian distribu-
tion! We could interpret the distribution of Fig. 1 as arising from a similar 
mechanism, where the variable taking on the values 1 and -1 is associated 
with the right and left displacements of the marble at each obstacle. 

A limiting Gaussian distribution is actually approached for an arbitrary 
initial distribution of the independent variables that are to be added (actu-
ally with very mild restrictions)! This is the content of the central limit 
theorem, that was studied by De Moivre, Laplace, Poisson, Herschel, Lya-
punov. The resulting Gaussian distribution contains only two parame-
ters, or relevant quantities: centroid and width; these depend only upon the 
centroid and width of the original distribution, other details of the latter 
being irrelevant! Thus the central limit theorem describes a situation in 
which a universal distribution is attained, and uncovers the relevant quanti-
ties.We can also interpret the above situation in a very appealing way"•z. 

Suppose that N objects are thrown at random in the slots of Fig. 3, with 
the only requirement that the distribution should have given centroid and 
width. One can show that out of all configurations fulfilling this require-
ment (three such possibilities are sketched in Fig. 3), the Gaussian distribu-
tion is the one that occurs most frequently! With a suitable definition of 
information, one can also show that the information carried by a Gaussian 
is smallest among those distributions having the same constraints. 

The above observation allows us to rephrase the central limit theorem 
saying that the sum of a large number of statistically independent random 
variables (properly normalized; we shall not be more precise here) has a 
distribution that approaches one of minimum information among those 
having the same centroid and width! The latter are thus the only relevant 
quantities left in the problem. We can also interpret the Maxwell-Boltz-
mann distribution of molecular velocities as the one of minimum informa-
tion for a given temperature, which is thus the only relevant quantity. 



Pier A. Mello 167 

In what follows we shall see how some of the above ideas can be used 
successfully to study a number of problems in other branches of physics. 
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Scattering problems in physics [1,2] 

The oldest way that physicists have to study a system is to throw certain 
"projectiles" to it and analyze what "comes out": this is called a scattering 
experiment. In everyday life we turn on the light to "see" an object: in fact, 
what we do is analyze the scattering of light by that object. 

In Fig. 4 we present the result of a scattering experiment intended to 
study an atomic nucleus: the "target" is an isotope of chlorine and the pro-
jectiles are protons, accelerated at the energy indicated in the abscissa of the 
figure: roughly 10 million electron volts. Part of what comes out are a-
particles, whose number, detected at a fixed angle, is plotted in the figure. 

We observe that the a-particle yield varies with energy in a very compli-
cated way. Actually, nobody knows how to do a calculation, starting from 
the Schroedinger equation, to reproduce the complex behaviour shown in 
Fig. 4. But even if one did, one probably wouldn't learn much! Again, just 
as we saw in the previous sections, a statistical description, which is the 
only feasible one, may reveal features of considerable physical signifi-
cance. In a statistical analysis one is interested, for instance, in the plot of 
Fig. 4 smoothed, or averaged, over energy, the size of the fluctuations 
around that average and, more generally, the full statistical distribution 
of such fluctuations. 
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In a number of problems like the one of Fig. 4 one has found that the 
relevant quantity is the smoothed out behaviour and that, once this is spec-
ified, the statistical properties are universal! Indeed, the actual statistical 
distribution carries minimum information among those distributions that 
have the same smoothed out behaviour! Although the present problem is 
more complex than the ones considered in the previous sections, and the 
resulting distributions are, accordingly, more complicated than the Gaus-
sian distributions found there, it is remarkable that a similar philosophy 
applies. 

What is really remarkable is that the notions of relevant quantities, 
information and universality allow a beautiful description of the statis-
tical properties of a variety of systems whose dimensions differ by so many 
orders of magnitude. The typical size of an atomic nucleus is 

,r 
 10-14m. In 

recent years there has been much interest in the electronic conduction in 
solid state devices called mesoscopic, whose typical dimensions are — 10-6 — 
10-7m; an electron that moves inside such a system sees a random medium, 
and it is this fact that gives rise to statistical considerations. A similar 
problem of random scattering is encountered in the study of the propa-
gation of electromagnetic waves in a disordered medium; in the case of 
microwave experiments one is dealing with macroscopic systems of the 
order of lm. 

We would like to finish with the comment that, in a sense, the guiding 
philosophy of the above presentation is contained in William of Occam's 
(1300-1349) famous dictum: 

"Essentia non sunt multiplicanda praeter necessitatem", 
known as the "Occam Razor". Occam's statement, which, literally, means: 
"Entities do not have to be multiplied beyond necessity", was rephrased by 
Bertrand Russell [4] as: "If in a certain science everything can be inter-
preted without a certain hypothesis, there is no reason to use it". 
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