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Prasanta K. Pattanaik, C. R. Barrett 

The Choice Axiom of Luce and 
Stochastic Social Decisions 

Diese Arbeit untersucht die Überführung (Aggregation) stochastischer individuel-
ler Auswahlfunktionen in eine stochastische soziale Auswahlfunktion. Es wird 
angenommen, daß soziale Auswahlfunktionen das Auswahlaxiom von Luce und 
eine Regularitätsbedingung erfüllen und daß die Menge aller Auswahlfunktionen, 
die diesen beiden Forderungen genügt, die zulässige Menge individueller Aus-
wahlfunktionen definiert. Weiterhin wird postuliert, daß die soziale Entschei-
dungsregel die probabilistischen Gegenstücke der Arrow'schen Bedingung der 
Unabhängigkeit irrelevanter Alternativen und des Einstimmigkeitskriteriums er-
füllt. Unter diesen Voraussetzungen kann die Existenz einer Person mit folgender 
Eigenschaft nachgewiesen werden: Für jede durchführbare Menge von Alternati-
ven sind die von diesem Individuum den einzelnen Alternativen zugeordneten 
Auswahlwahrscheinlichkeiten gleichzeitig die entsprechenden sozialen Auswahl-
wahrscheinlichkeiten, und zwar unabhängig von den Auswahlwahrscheinlichkei-
ten anderer Individuen. 

1. Introduction 

The purpose of this paper is to develop a model of group choice where the 
choice functions of the individuals constituting the group, as well as the 
choice function of the group itself, are assumed to be stochastic in nature. 
Assuming that all these choice functions satisfy the Choice Axiom of 
Luce [13, 14] and the assumption of >regularity<', we investigate the 
structure of group decision functions (i. e. procedures for aggregating the 
choice functions of individuals into a group choice function) which satisfy 
the stochastic counterparts of Arrow's independence of irrelevant alter-
natives, and the unanimity criterion. Since the literature on collective 
choice theory has mostly concentrated on deterministic choice models2, 
and since many of the existing contributions which do investigate the 
problem of group choice in a stochastic framework, use assumptions 
different from ours, it may be worthwhile spelling out in some detail, our 
motivation for: (a) using a stochastic framework, and (b) using a set of 
assumptions different from those figuring in many earlier contributions 
which also develop stochastic models of social choice. 

In the recent past, psychologists have increasingly modelled individual 
choice behaviour in stochastic terms. Surveying this literature nearly two 
decades ago, Edwards [8] wrote, »In 1954 the theories of choice were 
mostly deterministic ... The major recent theoretical development is a 



134 Wissenschaftskolleg • Jahrbuch 1985/86 

shift from deterministic to stochastic models«. Two decades later now, 
the transformation seems to be almost complete, and stochastic individ-
ual choice models seem to be the rule rather than the exception in 
psychology.3  The significance of this for the theory of collective choice is 
obvious. If in certain contexts, individual choice behaviour is assumed to 
be stochastic, then clearly in the normative theory of collective choice, it 
will be natural to assume that social choice is also stochastic in those 
contexts. If given two alternatives, x and y, every individual in the society 
chooses x with probability .7 and y with probability .3, then it is not at all 
obvious why one should require social choice over {x, y} to be determinis-
tic. Independently of this consideration, the introduction of a stochastic 
group choice function has also been often motivated by the possibility 
that it might provide an escape route from the classic impossibility result 
of Arrow in so far as it opens up another dimension over which reconcilia-
tion of conflicting preferences could be achieved. Thus if there are two 
alternatives x and y and three individuals two of whom prefer x and one of 
whom prefers y, the probabilistic social choice model does not force us to 
say that given {x, y}, society must choose x alone ory alone (or alternative-
ly, that it does not matter which alternative is chosen); the probabilistic 
framework allows a wider range of possibilities by permitting non-trivial 
social choice probabilities for x and y. 

These are some of the reasons why it may be of interest to construct 
models of social choice where social and individual choice functions are 
assumed to be stochastic. However, in constructing such models one 
clearly needs simple and intuitively plausible axioms governing the prob-
abilistic choice functions — axioms which will perform the role of the 
>rationality< postulate in traditional economic theory. Many of the earlier 
contributions assumed the probabilistic choice functions to be ration-
alizable in terms of random orderings (see [2], [3], [11], and [19]).4  In 
contrast, we have chosen to assume the Choice Axiom of Luce and the 
property of regularity, for the probabilistic choice functions. This is 
because of several reasons. First, in terms of experimental evidence, 
rationalizability in terms of stochastic orderings does not seem to have 
fared much better than Luce's Choice Axiom or regularity, as a descrip-
tive hypothesis about individual behaviour. At the same time, the as-
sumption of rationalizability in terms of stochastic orderings does not 
seem to have any compelling appeal as an intuitively transparent canon of 
probabilistic rationality. Given this, it seems desirable, also to explore the 
implications of alternative assumptions such as Luce's Choice Axiom and 
regularity, which have considerable intuitive appeal as properties of ra-
tional probabilistic behaviour (we take up this point again in Section 2). 

In our main results we assume that social choice functions satisfy the 
Choice Axiom of Luce and regularity, and that the set of all choice 
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functions satisfying Luce's Choice Axiom and regularity constitutes the 
permissible set of individual choice functions. In addition to this, the 
group decision procedure is assumed to satisfy the probabilistic counter-
parts of Arrow's independence of irrelevant alternatives, and the unanim-
ity criterion. Given these assumptions we demonstrate the existence of an 
individual such that for every feasible set of alternatives, the choice 
probabilities attached by him to the different alternatives emerge as the 
corresponding social choice probabilities irrespective of other individ-
uals' choice probabilities. Thus given our assumptions, the permissible 
group decision procedures degenerate into trivial dictatorial forms (rem-
iniscent of dictatorship in the deterministic structure of Arrow) despite 
the wider stochastic framework. This dictatorship result is much stronger 
than the central propositions of several earlier contributions (see, for 
example, [2], [3], [4], [10], and [19]) which essentially established a sub-
additive power structure.5  It is also worth noting that our conclusion re-
garding the power structure applies to all feasible sets of alternatives, 
irrespective of their size; this is in contrast to the conclusions of the 
contributions cited above which derive restrictions on the structure of 
power with respect to two-element feasible sets but not feasible sets with 
more than two elements. 

2. The Notation and Definitions 

N= { 1, 2,...,n) is the set of all individuals constituting the society and X is 
the set of alternatives (œ > n > 2 and c > IX I > 3). The set of all non-
empty subsets of Xis denoted by 2'; the elements of 2' are called issues. 

Definition 2.1: A probabilistic choicefunction (PCF) is a function p: Xx2' 
[0,1] such that for all A e 2', 

XE 
 p(x, A) =1 and for all xE X-A, p(x, A) = 0. 

Thus given any feasible set A of alternatives, a PCF specifies the 
probability of choosing the various alternatives. When an issue has just 
two elements - say x and y, to lighten the notation we write simply p(x, y) 
and p(y, x) instead ofp(x, {x, y)) and p(y, {x, y}) respectively. Similarly, p(x, x) 
= p(x, {x}) =1. Given a PCFp and given two issues A and B such that B ç A, 
p(B, A) stands for E p(x, A). The set of all PCFs will be indicated by P. 

XE B 
For all p e P, and for all A E X, A' (p) stands for {xe Al p(x, y) > O for ally  A}. 

Definition 2.2: A probabilistic group decision function (PGDF) is a func-
tion f: P"-- P where 0# P c P. 

The n-tuples of PCFs in the domain of a PGDF are indicated by q = 
(q1,. • .,q"), q' = (qi,• • .,q ") etc. and we write p = f(q), p' = f(q') etc. q;  is to 
be interpreted as the PCF of the i-th individual while p,p' etc. refer to 
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PCFs of the society. The domain and the counterdomain of a PGDFfwill 
be indicated by Df  and CDf  respectively. 

Definition 2.3: Let f be a probabilistic group decision function. f satis-
fies 

(2.3.1) Binary Independence of Irrelevant Alternatives (BIIA) iff for all 
x, y, EX, and for all q, q'E Df , if [q;(x,y)=qj(x,y) for all ie N], then p(x, y)= 

(x; Y); 

(2.3.2) Binary Unanimity Rule iff for all x, ye X, all qc Df, and for all to 
[0,1], [q;(x, y) > t for all ie N] implies [p(x, y) > t]; 

(2.3.3) Binary Neutrality (BN) iff for all x, y, x', y' E X, and for all q, q' E Df, 
if (for all i E N, q;(x, y) = q;  (x', y')), then p(x, y) = p'(x', y').  

(2.3.4) Binary Monotonicity (BM) iff for all x, y e X, and for all q, q' E Df , if 
(for all i E N q;(x, y)> q;(x, y) ), then p'(x, y) z p(x, y). 

(2.3.5) Binary Anonymity (BA) iff for all x, yE X, all q, q' e Df, and every 
one-to-one function M from Nto N, (q;(x, y) = qmo  (x, y)) implies (p(x, y) 
=p'(x Y) )• 

Most of these properties are probabilistic counterparts of correspond-
ing well known properties in the deterministic framework, and therefore 
hardly need any comment. 

So far we have not introduced any restriction on the domain or counter-
domain of the PCDFf These restrictions will clearly involve assumptions 
about what we consider to be the set of permissible individual PCFs and 
what we consider to be suitable >rationality< properties to be imposed on 
social PCFs. To specify our restrictions on Df  and CDfi  we first introduce 
certain properties of a PCF. Let 9P be the set of all linear orderings over X. 

Definition 2.4: Let p be a PCF. p satisfies 
(2.4.1) Rationalizability in Terms of Stochastic Orderings (RSO) iff there 

exists a function e: -- [0,1] such that: (i) for all RE M, e(R) > 0, and 
RED  e(R) =1; and (2) for all xe X and all A e 2', p(x, A) = RE e(R) where 

92 = {RE .9 I x is the R-greatest element in A}; 

(2.4.2) Luce's Choice Axiom (LCA) iff for all A,B,CE2' such that 
CcBcA, if [p(x,y)0 0 for all x, yEA],  then ,g(C,A)_E(C,B)•E(B,A); 

(2.4.3) Regularity (Reg.) iff for all A, Be 2' such that Bc A, [p(x, A) < 
p(x, B) for all xe B]; 

(2.4.4) Strong Stochastic Transitivity (SST) iff for all x, y, ZE X, (p(x, y) > 
.5 & p(y, z) > .5) implies [p(x, z) > max(p(x, y), p(y, z))]. 
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Many earlier writers have imposed the property of RSO on social PCFs 
(see [3], [2], [11] and [19]) and on individual PCFs (see [11]). Intuitively, 
RSO implies that the probabilistic choice function under consideration 
could have been >induced< by a lottery over possible orderings. We do not 
postulate RSO either for individual PCFs or for social PCFs. In our main 
result we assume that Df =  L" and CDf  c L where f is the PGDF and L is the 
set of all PCFs satisfying LCA and Reg. What we call LCA is really only a 
part of the Choice Axiom as originally introduced by Luce [13]; we have 
not included the other part since it follows directly from regularity which 
we assume for social and individual PCFs. Reg. requires that the choice 
probability for an alternative should not increase as we go from a smaller 
issue to a larger issue which includes the smaller one. This seems an 
intuitively compelling assumption to make for social as well as individual 
PCFs. LCA applies non-trivially only when none of the pairwise compari-
sons is perfect. As has been often noted in the literature (see Luce ([13], 
[14])), LCA embodies the probabilistic version of the principle of inde-
pendence of irrelevant alternatives, which, in various forms, figures in 
Chernoff [5], Nash [16], and Radner and Marschak [17];6  and as such it has 
a powerful intuitive appeal as a normative principle of stochastic rational-
ity that may be imposed on social PCFs. The case for postulating LCA for 
individual PCFs is less clear. As a descriptive hypothesis about individual 
choice behaviour, the limitations of LCA are well known. Several exam-
ples and experimental results suggest that as a descriptive postulate about 
individual behaviour, LCA may not be appropriate in many contexts.? 
However, this is also true of most other properties (including RSO) often 
postulated for the probabilistic choice behaviour of individuals. As Luce 
[14] observes in his lucid and balanced survey, »... once we enter the path 
of strict rejection of models on the basis of statistically significant differ-
ences, little remains. To the best of my knowledge, the only property of 
general choice probabilities that has never been empirically disconfirmed 
is regularity ...« As against this inadequate empirical support for most 
properties, including RSO and LCA, postulated for probabilistic individ-
ual choice behaviour, there is the need for simple assumptions about 
>rational<, stochastic, individual choice, which can constitute the basis of 
theoretical models. It is this consideration, rather than considerations of 
universal empirical confirmation, which, at the present stage of our 
knowledge, lends interest to analysis based on the assumption of LCA (or 
alternatively, on the assumption of RSO) for individual PCFs. 
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3. Some Implications of Luce's Choice Axiom and 
Regularity 

In this section we explore certain implications of LCA and Reg., which we 
later assume for social as well as individual PCFs. 

Proposition 3.1: Let p be a PCF satisfying LCA, and A E 2' be such that A 
= A+ (p) (i. e. within A no pairwise discriminations are perfect). Then 

(3.1.1) for all BE ' such that Bc A, [p(x, A) < p(x, B) for all xe B]. 

(3.1.2 Luce [13]) for all x, y, zEA, [p(x, y) > .5 & p(y, z) > .5] implies 
[p(x, z) z max  (p(x, y), p(y,  z))]; 

(3.1.3) for all x, y, ZE A, if p(x, y) = 0 and p(x, z) = 0 ', then p(z, y) = 
(1-0 ')/(1-28' + [B'/0 ] ); in particular, when p(x, y) = p(x, z) = 0 , p(z, y)= 112; 

(3.1.4) for all x, y E A, p(x,A)/p(y,A) = p(x,y)/p(y,x). 

Proof:  The reader may refer to Luce [13] for the proofs of Propositions 
3.1.2 and 3.1.4. Luce [13, p. 16] also shows that given A = A+ (p), for all 
x, y, ze A, p(x, y) • p(y, z)- p(z, x) = p(x, z) • p(z, y) • p(y, x). With straightfor-
ward manipulation, this leads to Proposition 3.1.3. Proposition 3.1.1 
follows immediately from LCA, since by LCA, for all xe Bc A, p(x, A) = 
p(x, B). p(B, A) and since 0 < p(B, A) < 1. • 

Propositions 3.1.1 and 3.1.2 show that in the special case where p(x, y) * 0 
for all x and y belonging to the issue A under consideration, LCA im-
plies Reg. and SST over A. Therefore the use of Reg. (or SST) besides 
LCA imposes additional restrictions only when p(x, y) = 0 for some x and y 
belonging to the relevant issue. 

Proposition 3.2: Let p be a PCF satisfying Reg. Then 
(3.2.1) for all A E2'  and for all xE X, if [xEA&p(x,y)= 0 for some yE A], 

then for all BE .r such that Bc A, p(B, A) = p(B-{x}, A-{x}); 
and (3.2.2) for all x, y, z E X, if [p(x, y) =1 or p(y, z)=1], then [p(x, z) . min 

(P(x, Y), P(y, z) )1 

Proof: (3.2.1) Consider any xE A such that p(x, y) = 0 for some ye A. 
Then by Reg., p(x, A) = 0 and hence  E p(z, A) = 1. Again by Reg., 

ZE(A-{ {) 
for all wE (A-{x}), p(w, A-{x}) > p(w, A). Since E p(z, A-{x}) = 1 = 

Ze (A-{x}) 
E p(z, A), it follows that for all z€ (A-{x}), p(z, A-{x}) = p(z, A). 

ZE (A-{x)) 
Hence p(B, A) = E p(z, A) =  E p(z, A) =  E p(z, A-{x}) = 

ZEB ZE (B-{XD ZE (B-{x{) 

p(B-{x}, A-{x}). 



Prasanta K. Pattanaik, C. R. Barrett 139 

(3.2.2) Without loss of generality assume that p(x, y) = 1. Then min 
(p(x, y), p(y, z)) = p(y, z). Suppose p(x, z) < p(y, z). Then we show a con-
tradiction. Let A = {x, y, z) . By Reg., p(x, A) < p(x, z) and p(z, A) < p(z, y). 
Hence p(x, A)+ p(z, A) < p(x, z)+ p(z, y) < p(y, z)+ p(z, y)=1. However, given 
that p(x, y)= 1, by Reg. we have p(y, A) = 0. Therefore p(x, A) + p(z, A)= 1, 
which is a contradiction. ■ 

Proposition 3.3: Let p be a PCF satisfying LCA and Reg. Then 
(3.3.1) for all 0 e].5,1 [and all x,y,ze X, if[p(x,y) z .5& p(y,z)=0] or 

[p(x, y) = B & p(y, z) > .5], then p(x, z) z  B . 

(3.3.2) for all x, y, ze X, if p(x, y) = p(y, z) = 1, then p(x, z)= 1. 

Proof:  (3.3.1) If p(x, y) = 1 or p(y, z) = 1, the conclusion follows 
immediately from Proposition 3.2.2. On the other hand, if p(x, z) = 1 the 
conclusion is trivial. Suppose therefore p(x, y) <1, p(y, z) <1, and p(x, z)<1. 
To show p(x, z) >0, suppose on the contrary p(z, x) = 1. Then again by 
Proposition 3.2.2, either p(y, x) > e or p(z y) > e, establishing a contradic-
tion. So p(x, z) > 0 and Proposition 3.1.2 is applicable to x, y and z with A = 
{x, y, z), completing the proof. 

(3.3.2) The result follows immediately from Proposition 3.2.2. • 

4. The Main Results 

We now explore the structure of PGDFs satisfying BILA and BUR when 
social and also individual PCFs are assumed to satisfy LCA and Reg. We 
first prove the following proposition. 

Proposition 4.1: Let f: L" - L be a PGDF satisfying BIIA and BUR, 
where L is the set of all PCFs satisfying LCA and Reg. Then (satisfies BN 
and BM. 

Proof:  First we show that 
for all distinct a, b, CE Xand all q, q' c Df , if q;(a, c) > q,(a, b) for all 
iEN, then p'(a, c) p(a, b) ... (4.1) 

Consider q'e Df  such that for all le Nq;(a, b) = q,(a, b) & q;{a, c) = q;(a, c) & 
q;{b, c) = 1. (It can be checked that given Df = L' and q;{a, c) > q,(a, b) 
for all i e N, such a q 'e Di  can be found. Note that for all le N, LCA is trivially 
satisfied by q) Comparing q and q"and using BIIA we have p'(a, b) = 
p(a, b). By BUR, p'(b, c) = 1. Given that pr'satisfies Reg., by Proposition 
3.2.2, p"(a, c) > p'(a, b). Hence by BIIA,p'(a, c) = p"(a, c)>. p(a, b) = p(a, b). 
This proves (4.1). 

It follows from (4.1) that for all distinct a, b, ce X and all q, q' E D f , if q; 
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(a, c) = q; (a, b) for all le N, then p'(a, c) = p (a, b), and noting that for any 
PCF r, and any â, b e X, ,(â, b) + r(b, 6)= 1, if q',(c, a) = q,(b, a) for all i e N, 
then p'(c, a) = p (b, a). BN now follows using the Arrow technique (1963, 
pp 99-100), and BM may be deduced from 4.1 together with BN. • 

Remark 4.1: It maybe noted that the proof of Proposition 4.1 does not 
require social PCFs to have the property LCA. Moreover, it is not difficult 
to modify the construction of e(used to derive (4.1)) so that the proof is 
valid when individual PCFs satisfy LCA, Reg. and SST, provided social 
PCFs satisfy at least SST. It will also be valid when Df is less or CDf more 
restricted. 

Remark 4.2: If L figuring in the statement of Proposition (4.1) is the set 
of all PCFs satisfying either LCA and Reg., or LCA, Reg. and SST, then 
general properties of neutrality and monotonicity (involving issues with 
arbitrary numbers of alternatives) can be proved. 

Theorem 4.1: Let f L"-L be a PGDF which satisfies BIIA and BUR, L 
being the set of all PCFs satisfying LCA and Reg. Then there exists a unique 
heN such that for all geDf, p(q) = qh. 

Proof: We first show that 
there exists h e N such that for all a, b e X and for all 4 e L", if 4h 
(a,b) = . 5, then p (a, b) > .5. ... (4.2) 

Let x,y and z be three distinct alternatives. Let N* be a smallest subset 
N' of Nsuch that for all 4E L", if 4;(x, y) = .5 for all ie N', and 41(y, x)= 1 for 
all je N-N', then ß(x, y) _ .5. Given BUR, such subsets exist and are 
nonempty. Let he N*. Construct qe L" such that [for all ie N*-{ h), q;(x, y)= 
q,(x,z)= .5 & q;(y,z)=1]; [for all je N-N*,qi(y, x)=g1(z, x)=g1(y,z)=1], 
and [qh(x, y) = qh(z, y) = .5 & qh(z, x) = 1]. It can be checked that such a 
qeL" exists. 

By BUR, p (x, z) < .5, and given BIIA and BN (which follows by 
Proposition 4.1), [p (x, z) =.5] contradicts the specification of N*. Hence p 
(z, x) > .5. Again by the specification of N*, p (x, y) = .5. Applying Proposi-
tions 3.2.2 and 3.3.1, p(z, y) z .5. (4.2) now follows by BN and BM. 

Suppose next 0 e ] .5,1[. Construct q' e L" such that [for all ie N-{14 , q'; 
(y,x)=q;(z,x)=

1
&q'r(y,z)=

0 ] and 
[q'(xy)=.5&gh(x,z)=gh(v,z)= 

0]. By (4.2), p'(x, y) > .5 and by BUR, p'(y, z) = 0 . Applying Proposition 
3.3.1, p'(x, z) z 0. It then follows by (4.2), BN and BM that 

for all 0 e [.5, 1[, for all a, be X and for all 4e L", if h(a, b) = 0 , then 
0 ... (4.3) 

Now consider any a, b e Xand 4 e L" such that qh 
(a, b)= 1. Let 8 c[.5,1 [ 

and let q'e L" be such that q',,(a, b) = 0 and [q~ (a, b) = 4, (a, b) for all i e N- 
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(h}]. By (4.3), p'(a, b) > 0 and by BM, p(a, b) z pta, b) > 0 . Since this is so 
for all 0 E [.5, 1[, p(a, b) = 1. (4.3) may therefore be replaced by 

for all 0 E [.5,1 ], for all a, b, E X and for all 4E L", if 4h(a, b) = 0 , then 
p(a, b) > 0. ... (4.4) 

Next, let 0 e [0,.5[. Construct 4E L" such that [for all i E N-{ h}, q",.(y, x) = 
(z, x) =1 & 4,(Y, z) = 0 ] and [4'h(x Y) =1 & 4h(x z) = 417(Y, z) = 0]. By (4.4), 
p"(x, 

 
y)= 1. If p (z, x) > 1-0 , then applying Propositions 3.3.1 and 3.3.2, ji(z, y) 

> 1-0. But by BUR,/3(z, y)=1-0, and therefore p(x, z) > 0 . It then follows 
by BN and BM that (4.4) extends to: 

for all 0 E [0, 1], for all a, be X and for all qEL", if qh(a, b) = 0, then 
p(a, b) > 0 . ... (4.5) 

Since 4h(a, b) + h(b, a) =1 and p(a, b) + p(b, a) = 1, it is clear that the 
weak inequality in (4.5) can be replaced by a strict equality. It is also clear 
the individual h is unique, and so 

there exists a unique hE Nsuch that for all 0 E [0,1], for all a, be  and 
for all 4e V, if h(a, b) = 0 , then p(a, b) = 0 . ... (4.6) 

Now applying Propositions 3.2.1 and 3.1.1, it follows that for all qe D1, 
P=4h. ■ 

The desire to escape the Arrow paradox has provided one of the motiva-
tions for adopting a stochastic framework of social choice. However, 
Theorem 4.1 shows that if the set of all PCFs satisfying LCA and Reg. 
constitutes the set of permissible individual PCRs, and if social PCFs are 
assumed to satisfy LCA and Reg, then the stochastic counterparts of 
Arrow's independence of irrelevant alternatives and Pareto Criterion 
again leave us with only trivial, dictatorial PGDFs. 

Notes 

1  See Definition 2.4 below. 
2 For some exceptions see Fishburn and Gehrlein [9] and Intriligator [12] in 

addition to the papers cited below. 
3 For an account of a large section of the relevant literature, the reader may refer 

to two important surveys - Fishburn [10] and Luce [14]. 
4 For precise definition of>rationalizability< see Definition 2.4 below. Note that 

Barbera and Valenciano [4] use certain properties implied by >rationalizability< 
rather than >rationalizability< itself. 

5 McLennan [19] establishes additivity of the power structure given the assump-
tion that there are at least six distinct alternatives. 
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6 This should not be confused with the entirely different property of independ-
ence of irrelevant alternatives due to Arrow [1]. 

7 Cf. Debreu [7], Chipman [6], and Morgan [15]. 
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