2017/2018

Lars Chittka , Dr. rer. nat.

Professor of Sensory and Behavioural Ecology

Queen Mary University of London

Born in 1963 in Bad Homburg
Studied Biology at Georg-August-Universität Göttingen and at Freie Universität Berlin


Project

Hive Mind: the Intelligence of Honeybees, Bumblebees and Their Relatives

My main goal is to write a book entitled as above.
People have long been fascinated by the immense variety of instinctual behaviours that are required so that a 60,000-individual-strong beehive can operate like a smoothly oiled machine. While people accept that the neural templates for dozens of complex instinctual behaviours can be instantiated in a miniature brain such as a bee's, the common perspective is that there is insufficient room for intelligence in an insect head.
It is now clear that this notion is no longer tenable. Foraging bees navigate successfully over miles, recalling the location of their hive and multiple foraging destinations. In visiting flowers, they remember the most profitable species by their colours, patterns and scents, but studies of the cognition of bees in the past 20 years have substantially challenged the notion that simple associations explain how a bee interacts with its environment. Bees can count landmarks, recognise human faces and solve basic versions of the travelling salesman problem. Just last year, it was discovered that bees can solve cognitive problems once thought to be the domain of primates, e.g. pulling a string to gain access to reward and simple tool-use problems. An important shift in perspective has been generated by the observation that bees' intelligence is highly individually variable. The existence of such "personality"-like phenomena has important consequences for the organisation of labour in the hive, and variance between hive "personalities" directly affects fitness in the economy of nature.
The core of the book will be to describe these recent research breakthroughs and their significance across disciplines, and in a manner that is intelligible not just to scientists, but also to the scientifically interested layman. The findings above have wide-ranging implications for understanding cognition in animals more generally, its evolution and its neural-computational underpinnings. They call into question the notion that large brains are required for intelligent behaviour and open future avenues of research exploring the neural hardware mediating cognition in relatively small nervous systems. Insect nervous systems have several orders of magnitude fewer neurons than vertebrates, meaning that we can give crisp mechanistic explanations for relatively complex behaviour. Recent neurobiological research and modelling has shown that advanced cognitive capacities naturally emerge from exceptionally small neural circuits. This raises the question of what big brains are for - and the answer might well be that they do not necessarily mediate higher intelligence - but just more memory storage space, rather than more complex or faster computations. The microcomputer that is the bee brain thus offers potentially extremely efficient and elegant biological inspirations for information-processing in real computers.

Recommended Reading

Chittka, L. and Niven, J. (2009). “Are bigger brains better?" Current Biology 19: R995-R1008.
Perry, C. J., Baciadonna, L. and Chittka, L. (2016). "Unexpected rewards induce dopamine-dependent positive emotion-like state changes in bumblebees." Science 353 (6307): 1529-1531. doi: 10.1126/science.aaf4454.
Loukola, O. J., Perry, C. J., Coscos, L. and Chittka, L. (2017). "Bumblebees show cognitive flexibility by improving on an observed complex behavior." Science 355 (6327): 833-836. doi: 10.1126/science.aag2360.

Publications from the Fellow Library

Chittka, Lars ( 2012)
What is comparable in comparative cognition?

Chittka, Lars ( 2009)
Are bigger brains better?


Tuesday Colloquium - Work in Progress12.12.2017

Dienstagskolloquium - Arbeitsbericht, Tuesday Colloquium - Work in Progress

more